MATH 590: QUIZ 4 SOLUTIONS

Name:

1. True or False (no explanation required). The function $T : \mathbb{R}^3 \to \mathbb{R}$ given by $T(a, b, c) = e^{a+b+c}$ is a linear transformation. (2 points)

Solution. False.

2. Let $T : \mathbb{R}^3 \to \mathbb{R}^4$ be given by T(x, y, z) = (x - y, y - z, x + y - z, z - x). Find the matrix of T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R}^4 . (4 points)

Solution.
$$T(1,0,0) = (1,0,1,-1), T(0,1,0) = (-1,1,1,0), T(0,0,1) = (0,-1,-1,1),$$
 and therefore the resulting matrix is $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}$.

3. Suppose $V := P_2(\mathbb{R})$ is the vector space of real polynomials of degree less than or equal to two. Take vectors $v = 1 + 2x - 3x^2$ and $u = 2 - x + 5x^2$ in V and let $\alpha = \{1, x, x^2\}$ denote the standard basis of V. Verify that $[2v + 3u]_{\alpha} = 2[v]_{\alpha} + 3[u]_{\alpha}$. (4 points)

Solution. We have
$$[v]_{\alpha} = \begin{pmatrix} 1\\ 2\\ -3 \end{pmatrix}$$
 and $[u]_{\alpha} = \begin{pmatrix} 2\\ -1\\ 5 \end{pmatrix}$, so that $2[v]_{\alpha} + 3[u]_{\alpha} = 2 \cdot \begin{pmatrix} 1\\ 2\\ -3 \end{pmatrix} + 3 \begin{pmatrix} 2\\ -1\\ 5 \end{pmatrix} = \begin{pmatrix} 8\\ 1\\ 9 \end{pmatrix}$.
On the other hand,
 $[2v+3u]_{\alpha} = [2(1+2x-3x^2)+3(2-x+5x^2)]_{\alpha} = [8+x+9x^2]_{\alpha} = \begin{pmatrix} 8\\ 1\\ 9 \end{pmatrix}$,

which gives what we want.