MATH 590: QUIZ 4 SOLUTIONS

Name:

1. True or False (no explanation required). The function $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $T(a, b, c)=e^{a+b+c}$ is a linear transformation. (2 points)
Solution. False.
2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be given by $T(x, y, z)=(x-y, y-z, x+y-z, z-x)$. Find the matrix of T with respect to the standard bases of \mathbb{R}^{3} and \mathbb{R}^{4}. (4 points)

Solution. $T(1,0,0)=(1,0,1,-1), T(0,1,0)=(-1,1,1,0), T(0,0,1)=(0,-1,-1,1)$, and therefore the resulting matrix is $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & 0 & 1\end{array}\right)$.
3. Suppose $V:=P_{2}(\mathbb{R})$ is the vector space of real polynomials of degree less than or equal to two. Take vectors $v=1+2 x-3 x^{2}$ and $u=2-x+5 x^{2}$ in V and let $\alpha=\left\{1, x, x^{2}\right\}$ denote the standard basis of V. Verify that $[2 v+3 u]_{\alpha}=2[v]_{\alpha}+3[u]_{\alpha} .(4$ points $)$

Solution. We have $[v]_{\alpha}=\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)$ and $[u]_{\alpha}=\left(\begin{array}{c}2 \\ -1 \\ 5\end{array}\right)$, so that $2[v]_{\alpha}+3[u]_{\alpha}=2 \cdot\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)+3\left(\begin{array}{c}2 \\ -1 \\ 5\end{array}\right)=\left(\begin{array}{l}8 \\ 1 \\ 9\end{array}\right)$.
On the other hand,

$$
[2 v+3 u]_{\alpha}=\left[2\left(1+2 x-3 x^{2}\right)+3\left(2-x+5 x^{2}\right)\right]_{\alpha}=\left[8+x+9 x^{2}\right]_{\alpha}=\left(\begin{array}{l}
8 \\
1 \\
9
\end{array}\right)
$$

which gives what we want.

